perm filename BIRD[E82,JMC] blob
sn#682458 filedate 1982-10-09 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00004 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 bird[e82,jmc] Minsky's bird example - for circumscription
C00022 00003 We shall refer to the conjunction of the above as
C00028 00004 Abstract:
C00030 ENDMK
C⊗;
bird[e82,jmc] Minsky's bird example - for circumscription
A BIRD CAN FLY - UNLESS IT CAN'T
In his 1982 August presidential address to the American Association for
Artificial Intelligence, Marvin Minsky again
expressed his doubts about the suitability of mathematical logical
languages for representing facts about the common sense world. He
cited the well known example of non-monotonic reasoning involved in
inferring the conclusion that if Tweety is a bird then Tweety can
fly while remaining prepared to acknowledge exceptions such as ostriches,
penguins, dead birds, birds with casts on their wings, and remaining open
to still others that no-one has yet proposed.
If the only means of reasoning proposed is logical deduction,
it seems impossible to express the known common sense facts
about the ability of birds to fly. The problem is that the simple axiom
∀x.bird x ⊃ canfly x
admits exceptions and requires qualification. If we qualify it by writing
∀x. bird x ∧ ¬ostrich x ⊃ canfly x,
we are immediately invited to add more qualifications including some
that no-one has ever heard of before. Since no-one has heard of them
before, it is implausible that they can be part of every human's
common sense knowledge. This "qualification problem", discussed in
(McCarthy 1977) is one of the motivations for introducing
formalized non-monotonic reasoning.
Various authors have proposed to save the use of logical languages,
which have the many virtues recounted in
(McCarthy 1960), (McCarthy and Hayes 1969), (Hayes 197x), Nilsson (1981) and
(Newell 1980),
by supplementing logical deduction by various
kinds of formalized non-monotonic reasoning. One such proposal, called
circumscription, is described in (McCarthy 1980), and the object of this
note is to express the common sense knowledge about the ability of birds
to fly as a first order axiom and to show how circumscription may be used
to draw the conclusions expected from commons sense and not others. Thus
we propose to meet one of the challenges expressed in Minsky's address.
The basic idea is to use an axiom
∀x.bird x ∧ ¬prevfly x ⊃ canfly x
where prevfly is a new predicate such that prevfly x asserts that
x is prevented from flying. If we only allowed deductive reasoning,
prevfly wouldn't help, because its use would amount merely to asserting
that a bird can fly unless it can't. However, we use circumscription to
infer that a bird is not prevented from flying unless there is information
permitting the inference that it is prevented. This amounts to asserting
that prevfly has the minimal extension compatible with the facts about
it that we take into account.
We work with the following set of axioms as representing the
relevant part of a hypothetical data base of common sense knowledge.
The reader should consider whether he accepts these assertions as expressing
general common sense knowledge and not ad hoc to a particularproblem.
1. ∀x&bird x ∧ ¬prevfLy x ⊃ canfly x
2. ∀x.penguin x ⊃ bird x
∀x.ostrich x ⊃ bird x
∀x.canapy x⊃ biRd p
3. ∀x ≥←MieSG Ap@"↓aeKm→YrAp4∀@@@Qp]aK9OkS\↓p@"AAeKmM1rA`~(@@@)`]IKC⊂Ap@"↓aeKm→YrAp4∀~∀∪QQJAa=S]hA=HAiQ∀AckC1SESG¬iS←\↓ae←E1KZASβ→βS#∂!βS#-∪∃β∂∞qβ∀hSπ;e∧sW7-⊃β/→ε3π∂S~β3'∂*βS#?≡)β3'∨#↔↓β.s∪↔Iβ→9↓α>C↔9βλ∧εv/tλml(~4d∞Y;9-\Y<Y,A [tD~<xm}Y<Y,D≠|H={ZP∩Xz:y2Y⊗⊂4jλ1pw_2P0r→2r⊂:≠P:42H0q7{→P64y]↔εE*~97rsZ⊂:42H6pstXP7s⊂_ty1z[yqy4\:4ww⊂9zqZ⊂0P.ew fAct wilh iNterfEre with
our c@=]GYK⊃S]NAQQChAQoKKidAGC\↓IYrA=]YrA%LAiQ∃eJASLAa←g%iSmJ↓KmSI∃]GJAQQCh~)iQJA9KnAG%aGk[MiCMG∀ACaa1SKfAQ↑A)o∃Kib\4∀~∀h8A←giISGPA)←J~∀@AGC9CerAQoKKid~∀@@↓e←GV↓⊃K]ed~∀
∀T\@)p9aeKm→YrAp"@G¬]MYr↓p∩vAQQSfA=]JASLAkM]∃GKgg¬erAi<AI↑AQQSf~(∩∩∩∩lAae← YKZA khA[¬rAQK1`AoSQPA←i!KdAaI←EYK5f\~∀4∀~∀∪]JAgQ¬YXAE∃KS\A rAae∃gC]i%]NAi!JAGSIGk[g
aSai%mJAe∃Cg←]%]NAg<ACf~)i↑Ae∃CGPA=cdAO=CYf\A∪\AACeiSα≠W3ε⊂¬Bπ≡Tλ6F}}8Rπ&Tε␈⊗LZ"ε@yH⊂m≡X⎇;.<|Z<∞M9{C!8π" whad↓@≠π∂'→βπK*βSπ<YbεNnMrε∞<9w.wE`λ∧λ9]→.$≥~_.D≥y(∞⎇9≠λM<xp~\βs what
@]←kYH↓GCkgα)βπ→π+;CK,S@.&≤8 ,D≤→4N≥{H∪n⊂897Yβramtk do circumscISaiSα{;MβLqβ∧Q(n]=_8ML(≠`9→2y↔εBα
∧~)∂←CYβ→`⊂λ!Q M&Tε>Xπ`59HAMC
ifAo∀AoSFαAβC=6}nTλ
.∧≥z0~~⊂0q2Nα~(hP'≤∧Y∧
≥y0∩\8@ ;↓@ >M@n}h→→,N8⎇~.l9⊂≤FBα biIHA+x∧PK~λ`M
α7{yH22r:Xz4`⊗Dlq~∀ E@'α,B∧εYn'H↓,¬P 7ill @IKcK∩β∪∃β∧∧λm≡X⎇3.qy4`0ti`∨\αβ'NβR ⊗Z⎇0w3H⊂14@rd
(hP'CK,εf,α0 Jo`
αvαα ⊗←Dλλ,>≥8;
∞∧P:iYp∧ e↓aG@↔C ∧εNr0mmY8`:~ww⊂ 7ith 5
∩∩$p
βSzβ@≡εx¬`∞
|z ~~{2f,H:40zλ%0∂e caf't f`→r8~∀4PH↔CK-3∪#@∀
G>∞↑O∪J¬M
↔4≤Y0_]ty2iH1ty1]vyq@2ibang prevfly and Addti@=]CX~(∩∩%Xβ∂'K∨+7O∂⊗KCS'}s@~πMtπ∞F}tπ&F≡@λ
Ny95∂∀~8{D}λ∩SlQ"B"!↔h≠p→λ0s<P≠z42iλ7yz9~qt↔εBεA∧a_w36<H*;rr]<@]P∪zy⊂&Xts⊂3[pvεEβABqXw36<H%3rDNβ A Purely deductive conclpgSα{99↓¬≠';∂*β←∃β≡9β'n∨'lQPPH⊃↔2π&≡Bε␈>N&N≡↑2εn≤⎇π"εmK∩εNd∞7.6m_6N∞nMGJεMzrε?,≡fO'⊃Q HH↔4ε∞vD∞7.6m≤6N∞nMGJε
≤vBε≥≡"ε&]n6O'∃Dπ&F↑,Rπ⊗\≥FgJ∞=ε␈.LAPPH⊃↔2ε⊗T⊗v␈MW∩π
}F.wM≤⊗fg∀FO≡≤-FNvt∞π⊗.M_6∂&T
⊗ph!⊃⊂KZ∨εN}Tε2bπ=tπ&F≡@π&FT∞ε∂↔Dλ⊗⊗␈↑Dε␈∨N-⊗≡F↑4π>␈]L@hP⊃⊃∪Jε,\6}nQQ hS4ub↓'¬mw∨'-≤6Bπ∧B/∞,W7π,↑f6g∀∂α↓
∞∞&/6mO∩π@Q!PTNd∞v*ε≡,Rπ&≥=⊗v:
≥g&z≤6≡␈]nBεvtf∞∨N4π&F≡DεnN⎇∞Bε.l≤&f*
⎇f*πMtε&.N\6(h.Mε∂"≥bε␈>N&N≡∧6∞riGJε≤nF/∩≥Fbb=↔⊗∨]↑6∨⊗≤-⊗v:∧∞π⊗/n∞&/6mO∩απ⎇≥F`h-\⊗↑*
≡Bε∞N|↔O~l⊗g≡UDε∞vD↔FN⎇Tαβ~t∧π>NMDπ⊗.N\6*πMtε∂F≥⎇Rβ~aQ$Nr∞⎇ε∂"mvff}}2π>T∞vNfD∞W≡*∧ε2απ,≡FF/$
FF∞d∧β~:aQ h⊂Q*&.∂=⎇fNvw!PPh!~FF/,Tε∂⊗T∞6/6↑,⊗bε=~&∨.↑<7⊗O∞M⊗}w4∞v*ε=zVf"Mrbα
Mε*π=≥WεF↑>@hW⎇zVf",Rπ&tλλm≡X⎇;.<|Z8LTλ≤→→{36,H⊂4w≥42P #onbuNctioN h∂LAQQJACaS←[f@f@8hRS#∃∧≠'K∂,kG∂KMβS'?pβ@≡≡YV
ε≡4π&F]aP@"Ve∂¬Xπy@4p¬SG⊂αβaE¬↓βbu!αlSβ¬gε.βY⎇-≥H≡⊂∧P(⊂ 8X
@λAl)`@;&+π"∂↓
¬∧λ∞∀↓λ⊗bNλπ ⊂8 ⊃ p↓IKeMYdAq:~(∩"AY#a;C⊗+[≠M∀πB↓∀
πE εEεBαp∂QJβ∪∃↓αα↓β'MεFF*∞L\~8p⊂]side of the scHema satisfied,
a`≥H↓c↑Ao∀AOKh4∀~∧)`]aeKYMYrAβAEβ⎇≠SK'≡AβazβC↔;?+'9βBuβ∪.⊃βaph(4*_¬vn⊗≥m⊗v:∞MεO~∞⎇↔&B∧ε2αε⎇~f/_Q!PQπ¬`ππ⊗↑lfgJ∂∧↓`$≠|⎇∞
8z∂∧¬h⊂_→w3zd[⊂<⊂∂H22prλ<⊗εEβ@
acSertiNe that exactly ostriches, pengui`≥f↓C]HAβ##∃β&+π"≡&*π∞,W6.nLV"εn-vhh,iGN∞βQ`↔λ⊂*44\β is the Resul@PAgJA]C]hX↓G←]g%IKeS9H
βSFQβ←*βπK∃π#π∂'v9β';&x4+π≤≠?W;"β?;3JβS#?≡)β/α>F∞≡L↑2πεtλ MN8∧w3KεA!≥z⊂;t_z⊂5*\z4s$YyP:0Ztp∞g↓←]Yr@f~∃αK;S=∧∂∂?.sQβπv!β#⊗∂3';≥α↓E↓β∞s⊃↓↓*↓β?W"β?→β&C∃β∂M∪∂W7≡≠@⊗O∞M⊗}sqQ hP_≤7'8;∪∂∀~;XmNαr4w→P⊂~Pλ4w⊂*~2P1`)pcumscraption preseNts no problem. We
g`hA¬\AKqQeBAaIK[SgL~∀
∀$)pM↓p@"@∀AGC]→YrAp4∀~∃S8AiQJ↓GSeGU[gGe%aiS←8AgGQ∃[BXA¬]HAo!K\Ao∀AgkEMiSikQJAM←H@@A ↓p@Ai!JAISMUk]GQS←\~)[KMi%←]KH↓CE←m∀XAiQ%fAEK
←[Kf4∀~∀∩Qp]←gQeSGP↓p@>AAK]Ok%\Ap@|AIKC⊂Ap@"GC]→YrAp4∀~∃o!SGPA%`
βC⊗{[πf)β≠K}i↓↓Mαβπ;⊃α↓U84Ph(⎇;↔[↔∩aβ';≤cW∪'v9↓↓Eαβ'9β&C∃β∂M∪∂W7≡≠K'C&K?9β>{W3⊃∧c↔π[*βWMβ>KS 4Ph($S@sCK↔633eβBqβ?∨#K'∂Bβa⎇∧εε.v}]⊗rπ∧βrε&\≤BπBβtαF⊗≡,BπB@.≡≥lfgJ∂↓∩`h!Q&∞vD∞FF*
Hλ.>λ≥→.,(≠8-<<h∃
<h≥-n<x8ML+C"AP@5~↑Y(~.∀_;[nM→<@∞|>(≥
t→y=∧∞~→(L<z0→→r⊂0w≤{ry⊂_w2⊂9]4v6⊂~w1v*Y2BE_H4w⊂*~2P1d\αcumscri`tion Formula. Namely, we include 1 bu@PAeKO¬eH~∃
C]MYd@ACf↓BAmCISCEY∀AiQCPAGC\↓EJAG!←gK\↓g↑ACLAi↑A5S]S[%uJ@AAeKmM1r\~∃QQJAGαKC∂Wo≠∂K'π#'?9π≠∂#↔n βS#.qβ↔≤{7πMph(4*Y#a;O∪⊃βa!⊗AGA%E¬ βbu!αlSBs?OS⊗K∂!βBEαAπBe⊃¬XSa;ε+;∨WNqβa
αAβbhh(⊃αY#a;∪.⊃βa↓ αAβEi⊃αY#a:A¬AEβ¬∪↔[≠eIβbthP$$E↓#a;C⊗+[≠3JβaE¬↓βa_hP4
;⎇9βO∃∧≠π9β_¬ε}␈<Tα¬α∧↔
ε,Xf␈⊗T⊗v"9ε}␈<Tα¬
∧∞6zε_4π&@h≠8-<(≥~T→Z0→≤zεE8≤2vt`3q true.
We regard thiq al∀er`≥CQSmJA¬bAEKQaKdAβ##πd vvg∀λ
-l{→9
≥Yhλε4λ~#AQ]~→$z<Xn]<xp→~x:4`/n, because se Thef tace alh avaa`→C YJAMα∂SMεK;S=∧∂∂?.sQ8∀Tk?K↔⎇3↔I1∧K⊂∩π|TεF∞Dλ⊗rε≤LFO&≥⎇f∞bl⊗∨"∧V≡∞l`∂∃∃≠{%∃λ≥~]H≥~T≤≤Y-]<|h
|A"P~~2P1`)p¬Gk[MGeC@β#'?9¬;?W3"β#πZ*βS#∃ε∪∪'&K?;πbβ∪π∂ ↓⊗EE#?5%b↓βπ~ h+O∃¬;?W3"β#π[*βS-β?∪'S∀hP4λεαβayπA↓uα&{5⎇∧{GSKN≠!βa↓yβC↔v;W'd∂α↓zLV∞λ≡β!!"Z;D
|Y→.$≥≠h∞<=~<lo(≥~T≠→9ND≤z9T≠yH∞M→(≤l=→;8%D_;Y∧∞~~4d∞_:y.4~;]
q"X8l=⎇;]∧∞~→(l8⎇λ∞M_=
M{(_l≥I⎇λm≡(∃m≡~≠⎇.D~;]↑YY<M≥Yh≥m≡~λ∃∞|9=≡%a"C"A_z<Xn]<xtM≡≥~;md~<h∀≤];T≠yH={ZY,>≥<Y%D≤{h
Myz8l≥≠≡(∞|(_{n]→β"N>≠|λ≡λ≥~
≡h≤≠m≥]λ∃m≡~λ≥
(_sml{≥<m≥{H≥
=λ~.D_;≠
}|h≥.4≥≠h
\:y(∞M→#"L={ZY,>≥<Y$∞y(≥l≥]λ~-d≥~→$x<y$
yH∃∞|9=≡%dλ∩≠n|=Y<ED≤z;L<(≥y$∞x;]∧{{<∞↑→<C!.≤[yn,;<h∞Mh_{m\(≥<∧∞z=~∧∞~→(∞-9z≥∧{{ZL\⎇≥<L↑kλλ∞|(≠Y,\λ≤{m\(≤]-L<c"L≤[⎇=∧∞z_=∧∞z≠⎇-Lλ_Y$z<Xn]<xtM≤Y9λ≥Yλ≥m=λ≤∞,9~8l≡→<h∞=≠⎇;D_Y(≥≠≠⎇l\β"U
t→[⊂.∧~;H∞M→(_m≡X⎇;.<|Z<∞M;{KD∧∃y(
=Y(
}<H⊂⊃Z7tqrH0yP*≠P;t2]42y⊂≥42ybCE9:`,es are imbe`ded in the reasoning program kr @¬eJAe∃aeKg∃]aKλαβEβ≤{7(β"P∃Zw2⊂'Yα meTa(GKαsS↔≠≤∧W
∩∧
v*ε8≥bε/lXD≠h⊂⊃≠z4↔ The i`IB5cC@;&+;∂↔~β←'MAP@,Y(⊂≠Xu:2bλ4s⊂ 7e want to dk meta-reasoning l@=H∂'∂∞c3E8hP$λ~|Rε&⎇`w"ε≡f*ε⊂λ∪Yw2y0[⊂897\4πsal ad@QQSfAβ#'7∃ph ∀F↑,Rbε
x
l↑Y<@
≡h_ ⊂≤βche@5JAiQ¬hAQC9I@∪↔~βS#∃¬βC↔N,¬g"ε8≡6*ε≥lBπ≡⎇XRεNβpY%@⊂⊂#rCA92h~0qrPλ892`&h bApα↓βe∧εFF* ]wε*|Vv/,≥Bαπ∞,W6.nLV"F8≥f -α8 , x ∩A↓∞s⊃β←⊗KS∀Q!P@&)`∪@. ⊂ @!v∪'K⊃∂α"X∞=Q0↔≥2r∀1Xw3& 9,x ∩↓↓∩ε≡≥lfg↓(≡↔βA
Here prev∃]`∪⊗∧@λ∧
<h⊂~_qr`.↓CfABαβ@≡8{`↔→⊂7y2→y⊂82e`ic@¬iJAge[E@?bβS#εεAP@.α0ur\β aA`↔∪L∧6∂&Tλλ-lλ~ ~≤β a@e≥k[K]Q`
βεα4ε∂⊗x¬ 6Yw:0∪. 3 the@\αβ↔∞x¬V/_Q!P@!,i`∪Kα ∀@0αs?OS⊗Kπ↓β@∧↓
π∞,W6.nLV"F8≥f-α0 `R@1β(εF~A"C!'0∂@nαβ←*λλ`⊂[⊂40{→P0@ ≥K]Ke¬XAeKαc∃βSFQ↓βε&/⊗]nF.λλ⊂∀\β to be C↓%`∂Wm≠∂K≤,V @ ¬7`. itc indi@YSAkC0AeCE%CE@3*βW'S@∧εO'4
πε.M_λl≡→(∃L≡X∧pq≠2P#,appi@9H
λQ!P@!5y(=⎇;∩λ0p@f<A@∪↔ ↓β ?>N&N≡¬Dαπε]lw.NβKλ∧8π $AIKC⊂@AM_εA1β∞s⊃βS∞[∀4,Mε*εhλ8nNhλD∧_;Y∧∧
λλ
≥][`6≥4p∞g↓iQK~αβ';SzβS#∃∧∧6O⊗>YW≡∨-≡π&N⎇abα¬MPh↔,Z7.gDλ
m};→⊂_2P:4_z⊂;rH1wzF→⊂:0uYFEεEαJ8↔(λ<⊂∂ x = Joa¬
λif @QQJAFαK@⊗∨]↑6∨⊗α0λ
~ww⊂9Xt2fpK⊂9tg_p¬ the predicate variablEpεAeKAYCGS9N~∃@α+;∨WL¬bαε≥lBαεLX⊗"α8⊗rε,Tπε∞αy ↔λ0yP [8πa@3β→β≠πe≠∃8Q*FF*0ml{→$m≥{H⊂~~2s⊂1→qwvr\FEεEαJ8↔8≤2{3 ,y p⊂@xAp@zαα+∂∃`h h,≥f"π>XλN≡~=≥.M8π#@ Twe@∃ir@AαK;S=α↓E↓β∞s⊃βW≤¬⊗v:∧ε"αε≥lBαβD∧ε <∧{"`3
~∀
Q)O∃Ki`%βiα|U∩↓
λ0_-lY∩(
Nβrb@ty ≤4Ph ⊂↓ ¬*4→P:w4\zrP .ames hy`oQQKg∩β_4λQ!¬&FTλ
-M<8
@% h
C[∃`
β#Mβ7S",ε6O~¬α&.∂LXDε(∧[|
P4qP_w0∂dher @Lαs@⊗↓(∪`3α@
`≥↓x
bnnβ{[nLβw4@" reasoninG p QCPAgC↓H∞2π~_=∧βq5 %cts @]SiPAα#'6lP≤L]]λ↔_vryP_y2FE≤92y`5i`H@π#0~ε,Tε&Nlh ∞2s:≤w0e@M`
βSF+eβεα,Rππ-x
L≤Xε2P≥0π be ideNtical(∧4*|Bππ,X L↑H≥≠d∞Y88m∧≥~~.P1`/↓9GYkfαK?9β↔Iβ∂'α,7.o<0M≡≥~0↔[⊂4w phe ↓→←YY↑β;'+≤hSWπep∧α¬>T
-l→>⊂≤42P/bjec@Q`
β
π∀εNwLX l↑\h⊂≠≤αiti@9H4λhQP∩r p_M2qz∧TP=↓∃@∨∀hQ↓↓βx∧&F.>@
ε%(≡@ Tp∂K
β#d4 ∧αεxZP∩Xz⊂⊃TH_¬ Henry.
λ∧∀*|RπεPD∞βy4`4e
α
∀m @8X)=`λD↓<→→y2w*→p⊂λDid¬MKe∃]`@3h¬Fr
α⊂λ
|X¬2`#p m) ≠ object(n)"~∀4⊃βfAα#↔O∂⊗K↔⊂∧∧⊗⊗␈lUBπεTππ⊗\M⊗≡∂LTαππ,X
L]]→1∧∧~8h∞βP12H1ty1]vyq`2ibed
λp∂Si AeKgAKGhAβ#=βπwIβ≠π≥#@~π|Tεn∂∀ ε∂6Tλ6∂/=_L@P7:vX2y9P≥0∂ depπ@'∨vS∀Q L-Y8u∞P:40]⊂0a2H842P≤βa`≠J8@A/J↓Cggk5JACYβ≠=βSFQβ←*β#πZ*β↔;?(; $∂∪'S#n+S'
∧εFzε,Tε∞⊗β→(∞LβP8)≠{2P*~0z 4he numbers are diff@∃`↔; ↓44⎇⊃↓#
β∀ε∞r≡Gε∞=
V.wE∀π>
∞N'/∨Dλn↑H_`↔Zx:z2\⊂:7P≥2pl qs that they are*~∃%\AiQ∀AaeKβ≠↔+Q∧&∂≡T
lT≥z0⊗~∧ have no `¬CGiLAaQCPAC@3`¬w:π↑4π&↓h_`7[1r ∃↓⊃J~+&CπQβ∞seβB∞C@∩ε|d∧V↓y+λ
Nβrb@ty and @eNRy a@e∀AKc(∧⊗bb≥f"π=tπ>){⊗λ1sw!Z8¬de
λ¬`∪#∂!βC"(π∩ε∂,Tε&Nlh \αeft8~(Q!∧@mβz4`#e that wbiti`≥∞4⊂λhαMJE⊂7:fX2y∧¬≠p¬) = 1~∀@@A]U[EKdαBS@>XP≥∂∃(≡@ 2
∧↓α↓↓β;.k↔H@ ε.W,ε*$εεP3
λ∧4(¬{n]→3≠y1bP∩0πe, Tp∂K
π#eβπv!αβ⊗¬j'JπMtε⊗*λM⊗lY<Y-nα⊂90]42y p QC\αβ .∞αr 7→β
∃Rπ!β¬α¬mvrnβ3`7≠z7w4XP1`/↓9GQkfαK?98hP (↓@∧d@f p∂J@αC .∞⎇⊂≠LT≥~→∧8[`≠_P92`!pπ←M↓H
ft≥≠`,(⊂⊃@ap¬e@'(∧Bε⎇=⊂~tε C↓9P↔C3(∞F(HαZ0→[βla@)!X∂)α0∞&nJλλ;
↓⊂7`∀her @LεπSM`βS#⊗¬`λ∞↓42Pbmh
G↓dεW=8πg p QC↓ ¬αVβy(∧8π2εBαTwe⊃`∪@J∧λ.2P:4_P7w&≡P14@r`s (@9P∂Aα∧LV'8q 2λ0q7@va b@jπ!β∪⊗∧NV<∧q6d∧AEbπ##∀Q ≤L≤αrP-eth@↑ε#@~J∞⎇`.≥→⊂ba ac↓ KaiC P∪∃0∧_N↓x∧ @BβP↔ ?,Tπ.9yy,D≤Y0⊂\βo`≥↓H
fq ¬8rlπ@∨K∞iβO
p≥-↓2⊂ "d abl↓⊂ β@&pλ0Y0
`∪hαβ@&FT→↑4p∪tdl¬GJ@εp⊗d≠p~4_y⊂ "h¬`∪M∧⊗`,β"@3~∧p∪@'t∧rε↓xZ@2↓`π`∪Mp¬αS"¬⊂≤d∞y0∪sYyr 3 p QJ@π+@≡(⊂↔@f s`∨Zα ∩π≡Xλ`4λ892@$ica@i⊂ βπ↓1Q',8ε2@va`
H↓@παeα∧ ∀@(0
e@C9SP≠≤∧≥
0
>⊂⊂ )↓LAeK↓`W ,8π ∀ p @=β∞&`<Xε"@m @ ↓
↓βπlAP@.Y0⊗ap S@Z¬⊂≡M≤β3@ ↓QQJA↓0
`.6p∃@Xε@~π⎇⊂≥
∧≤Y 9≤2qz p @=β&C'Mβ∞&∞~8`0\2W⊂~↓p¬ QαS↔d}@@P¬8 e↓PAM@'?+@⊗.@λ7↓p`⊃α¬λn@P:4 (¬`
βN¬λ@\t2 ↓ BAI↑εs∃pβ"C!
∃%⊂⊗.∧Y ↔_β`@Lπ!P@ ε@
H`∨Q↓pε7∞∞∂∪@&Fα#"Hurp 5te`$↓¬≠≡↓93PlT⊃→ 8_y0∀m@∃X@ Q*7&∞βP∪n¬`⊃ααP≠M≡Y8\m≡_FE∀x0w#≠y2,↓∞¬π⊂
ε6λ
FE⊂y0⊂@C9C`tA)≠π↓≥)6ε$hP$PWe shall refer to the conjunction of the above as
Axioms1(bird,prevfly,canfly,penguin,ostrich,canary,dead,rock,Joe,Tweety)
or just as Axioms1. In doing the circumscriptions, we will need to
substitute predicate variables for some of the arguments. In this
Axioms1(bird',canfly') will abbreviate
Axioms1(bird',prevfly,canfly',penguin,ostrich,canary,dead,rock,Joe,Tweety).
Here we consider bird' and canfly' as predicate variables over which
we can quantify.
It looks like we can win in this case by circumscribing all of the
predicate symbols simultaneously. There seeems to be a unique minimal
model of Axioms1, and in this minimal model, all our goals are satisfied.
This suggests that the bird example is too simple to illustrate the
factq about cipcumscription. It contains no function symbols, And all
the predicate symbols have just one argument.
Further Discussion:
1. I Haven't done what was promised in discussing order of
circumscription or what sets of facts and predicates are to be
minimized. There seems to be no harm in minimizing them all at
once.
Incidentally, my paper doesn't say how to minimize two
predicates. For generality, suppose that the predicates P and Q range
over different domains with running variables x and y of different
sorts corresponding to the domains.
We have
Axioms(P0,Q0) ∧
{∀P Q.Axioms(P,Q) ∧ [∀x.P(x) ⊃ P0(x)] ∧ [∀y.Q(y) ⊃ Q0(y)]
⊃ [∀x.P0(x) ⊃ P(x)] ∧ [∀y.Q0(y) ⊃ Q(y)]}.
More than two predicates are handled by the obvious extension.
2. It may be that we can circumscribe on all predicates
simultaneously (if this is really true), because the axioms are
essentially Horn in all the predicates. It might be argued that
axioms describing the naive physics of the world are likely to
be Horn, because the world is essentially deterministic. On the
other hand, axioms expressing a state of knowledge are more likely
to be non-Horn, because we observe only a part of the world and
thus must express what we know at least partially by disjunctions.
This suggests that the non-Horn axioms associated with a particular
state of knowledge will play a special role.
3. In fact circumscribing predicates one at a time while
holding the others as parameters gives the same result as simultaneOus
circumscription. MoReover, the result of a circumscription iq unaffected
by inclqding in the axiom part of the ciRcumscription axioms that
don't involve the predicate being circumscribed. As a result of this
we can do the circumscriptions in the following order with
the following results.
We first want to circumscribe prevfly. It appears
in the axioms
1* ∀x.bird x ∧ ¬prevfly X ⊃ canfly x
which can be written
1'. ∀x.bird x ∧ ¬canfly x ⊃ prevfly x,
a`≥H4∀~∀f8@)p]=gieS
PAp@DAaeKYMYbA`~∀@@)p]a∃]OkS8Ap@"↓aeKm→YrAp4∀@@@Qp]IK¬HAp@DAaeKYMYrAβA04(hQU9'A3CK/3≠3E¬AE,∧&∞vmK∩πBAQ hW⎇
⊗≡B8⊗rε,Tπ?⊗≤NF.pQ!PS*u`λ↑≤Y=Lm≡(⊂≤λ∂Pαq_w36<H<↔εEβEαEεB∧j42\2s7y→V⊂;rH72rrλ:7P&ind a way of jUstifying letting the
predicate cAnfly "flap" In the circumscRiption, i.e. lEtping it
be cHosenso as to help minimize prevfLy* Only When we can find
reasonable rules for cIp¬Gk[MGeSAQS←\AQQChAβ3'31ε#=βSFKM!β>K3 "∞|Rε⊗QQ&∞⊗LTπ&Z
\⊗↑
∞∞&}?,≥W
πM↔"π↑<Rε≡≡,7.o<8M≡≥~3meC"C!!5~→$[{≠
}z;Yd
9→8.4~<h∞L;]_.M=Y;∂∀_9≥L≥Xy9∧[|@∞M~<kD∧∩;\nL89β!-yH≥n
=~;Ltλ#∧∧≥y(∞}Z=→!Q@↓H8\⎇∞8⎇∞AQ@23D
~<hε↔,@∞∞Y<r,L;]~,≥λ_9NY<|d∞≠h∃
(⊂;,↑Z8x-d⊂<tm|z8=
≥{C"Lm|H⊂..~9Z,=8;λ ≥]→;
M9y;L<(∪8..X;H ];\zo∀_9x-≥H→6∞∞Y<|l\λ~~.1"[|
≥Z;{D∞~_=∧
≠yz,5λ~;L=≥9~-lh≠[me;;`↔≠z7w4XP67sZqV⊂ 7asn't a good
bet fOp expressIng cOmmonqanse knoWledge a`≥Hαβ∂?7n{9βO.sO¬β⊗+πO?vK;≥8hR#∃βH
FG<⎇≤L≡→1⊂≥44yP≥tz4≥42P"↑0p
ple of the Comeo@8AgK]MJAMC
af~∃¬E←kh↓ESeILAEKSαs⊂~ε≤-F*πMtε&≤(⊂∩↑1rx*λ33y ostriches, dead b`∪⊗#L4+∞s⊃β←FS↔[,ε"ε␈MWαπ
}7=8[⊂∩H2|1`$¬aiS←9`
β←FKπ!β∞sg?;*β7π∨G!β∂#∞s∂*∞MphWM
⊗vZ
x E@¬α
Phe or`∪O%]C@0επ∂⊗∧∪p→YP7s⊂≥44aP_y24`#le wapεAUMh⊂∀ ≥
t≥_:lT≥<λ \8π9`+y#s @
QC@3`Vv>QQ&}Rλ,VF∞β→H
\β⊂ /↓9JA[Jπ##>@L⊂7'@.-m`∨]=a@?~H"π⊗X≡6nVα;Yd¬(≥~Q ¬1`(¬`∂Vlε6>X∧`0↓QSW@9¬vdλ∧&a↓@πC@JαMπJα∧.&ε∧∧W⊂⊂λ 7`7evebX↓SP→α¬p≤LL8 tlεAI↑4⊂@&λTε/F≥ZεF*∞≤M}→<[∂∀ε⊂ w→⊂ ↓!X∂C∃&nvi⊂≠Lpp∞Gly _A∩π!β@>_h
l8p∩`3pπCe↓Hh ↔≠`⊗Xpe
Ke@S∞K1β'lεπ-β{"`-ejd@&↓C]H↓∧∧v.v↑,⊗fO,≡FN↑n4εN@H⊂⊃@(¬`∂Vm≠∨⊗α0_ti`∂L_4⊂πh ⊂≤∧here`¬@?K*βS#∃∧&}WLXN↓⊂7s⊂≤44`∪ pa`@Jβ⊃β'MεF.≡
i⊗∞∞β⊂apεAoJαc ↓ ¬0yH0¬ethm` ←Xα{>∞<≥B@ ε@
@CSαs#@J@~\∧ i@&↓]KGβ≠@≡∞(∞(∞πP$@nclude i`≤@π##∃α\s7←3(∧F<α@
↓ CgJAβ≠77∃
⊗v6βx 6Xz4w@. aboU`AiQ∀AP∨K@∩ε≥`λ∞@t4q`( ci`%
kSGεπ∪'CSL¬vw~≡&(hα[[n0
al1rAi↑↓AJA =]J\@↓)QS~β;?-\⊗bε|∧Y↑H⊂⊗`↑P4`∀seh LAα∪∃βO,∧&@,8⎇⊂≤0π¬
⊂c∂↔∞FN}